
Securing network traffic and intrusion detection data
Johnny S.K. Wong

Iowa State University
wong@cs.iastate.edu

Benjamin D. Uphoff
Los Alamos National Laboratory

bduphoff@lanl.gov

Client submits query in XML, provides
authentication information

Query processor authenticates the user,
logs the query in the system metadata for
auditing
Query is decomposed and parallel
search is executed
Results from the query are returned to
the result processor for filtering
Results are dynamically filtered with user-
specific access controls and returned to
the client application

Authentication, Logging and Access ControlsAuthentication, Logging and Access Controls
1

5

4

3

2

C

Client

DBMS

Result
Processor

Query
Processor

Data Set 1

Data Set 2

Query
Logs

4

Integrity
Checker

Checksum
Generator

MD5
Hashes

Data Layer Security Layer Client Layer

Integrity
Console

Query

Results

Audit
Console

Alerts

Intrusion Detection Framework Security FeaturesIntrusion Detection Framework Security Features

3

2

5

1

A

B

C

Data is streamed to the checksum generator, which
records a MD5 hash of each data file

The integrity checker periodically verifies the
integrity of each data file by re-computing the
MD5 checksum

If at any point the integrity check fails, the
integrity checker sends an alert to a monitoring
console

Data Integrity MonitoringData Integrity Monitoring

C

B

A

AbstractAbstract

Networking devices and intrusion detection systems are capable of
generating large volumes of audit information. This information should be
considered sensitive, as it can be used by organizations for forensic
investigations when a compromise of the network occurs. Privacy
concerns must also be considered, as there are many legal and ethical
issues with maintaining these types of data sets. Until now, little attention
has been paid to protecting these data sets from attackers, both internal
and external. This work provides solutions to this problem by describing
the data integrity and user authentication mechanisms needed to properly
secure network traffic and intrusion detection data sets within an
intrusion detection framework.

IntroductionIntroduction

We present an integrated framework for the capture and retrieval
of network security data sets that provides essential security features to
protect sensitive data. Data integrity is monitored through the use of
secure hashing functions. Access to data in the system is logged for audit
purposes and restricted by way of a domain specific query language. We
address the threats of both malicious insiders and external hackers by
providing security measures for both scenarios.

Network security and intrusion detection data is captured in real-
time and a MD5 checksum is generated. A daemon process continually
computes the checksums of data files stored within the framework to
compare against the original checksum.

To access data stored within the framework, client programs must
authenticate using a custom XML-based query language. User credentials
are mapped to access controls that are used to dynamically filter results
returned to the client. As queries are received, they are logged in the
system metadata so as to provide an audit trail of system use. This allows
administrators to assure that those with legitimate access are not abusing
their rights.

Additionally, all inter-process communications between clients
and servers are performed over SSL to protect sensitive data in transit.
System metadata is stored in a hardened relational database as a further
security measure.

-192.168.1.50srcipbob
+192.168.1.0~192.168.1.128srcipbob
+192.168.11.0~192.168.11.255dstipbob
+192.168.1.0~192.168.1.128dstipbob
Access ControlFieldUser

<Query user=“bob” password=“l0gm31n”>
 <SocketResult host=”192.168.1.1” port=”1234”/>
 <Query srcip=”192.168.1.0~192.168.1..255” date=”2004-9-1~2004-9-30”/>
 <Query dstip=”192.168.0.0~192.168.255.255” date=”2004-9-1~2004-9-30”/>
</Query>

Query ExampleQuery Example

In this example query, Bob requests data that from the 192.168 network be sent to a
socket on a server listening on port 1234. As shown in table 1, the user has access
controls restricting his access to data in the 192.168 subnet. The result processor
will use these access controls to dynamically filter out data that does not match the
access controls.

Before writing a record to the socket, the result processor filters the record based on
the information in table 1. If the field values (i.e. srcip and dstip) are not valid based
on this information then the result is not written to the socket. In this example,
records returned to the result processor with a source IP of 192.168.1.50 will be
filtered out according to the fourth access control entry in table 1.

Table 1. Access controls

